
B::CC - Perl compiler's optimized C translation backend

This compiler backend takes Perl source and generates C source code corresponding to the flow of
your program. In other words, this backend is somewhat a "real" compiler in the sense that many
people think about compilers. Note however that, currently, it is a very poor compiler in that although it
generates (mostly, or at least sometimes) correct code, it performs relatively few optimisations. This
will change as the compiler develops. The result is that running an executable compiled with this
backend may start up more quickly than running the original Perl program (a feature shared by the
compiler backend--see) and may also execute slightly faster. This is by no means a good
optimising compiler--yet.

If there are any non-option arguments, they are taken to be names of objects to be saved (probably
doesn't work properly yet). Without extra arguments, it saves the main program.

Output to filename instead of STDOUT

Verbose compilation (currently gives a few compilation statistics).

Force end of options

Force apparently unused subs from package Packname to be compiled. This allows programs
to use eval "foo()" even when sub foo is never seen to be used at compile time. The down
side is that any subs which really are never used also have code generated. This option is
necessary, for example, if you have a signal handler foo which you initialise with

. A better fix, though, is just to change it to . You can have
multiple options. The compiler tries to figure out which packages may possibly have subs in
which need compiling but the current version doesn't do it very well. In particular, it is confused
by nested packages (i.e. of the form) where package does not contain any subs.

Instead of generating source for a runnable executable, generate source for an XSUB module.
The boot_Modulename function (which DynaLoader can look for) does the appropriate
initialisation and runs the main part of the Perl source that is being compiled.

Debug options (concatenated or separate flags like).

Writes debugging output to STDERR just as it's about to write to the program's runtime
(otherwise writes debugging info as comments in its C output).

Outputs each OP as it's compiled

Perl version 5.8.6 documentation - B::CC

Page 1http://perldoc.perl.org

NAME

SYNOPSIS

DESCRIPTION

OPTIONS

perl -MO=CC[,OPTIONS] foo.pl

C

-ofilename

-v

--

-uPackname

-u

-mModulename

-D

-Dr

-DO

-Ds

B::C

$SIG{BAR}
= "foo" $SIG{BAR} = \&foo

A::B A

perl -D

Outputs the contents of the shadow stack at each OP

Outputs the contents of the shadow pad of lexicals as it's loaded for each sub or the main
program.

Outputs the name of each fake PP function in the queue as it's about to process it.

Output the filename and line number of each original line of Perl code as it's processed (
).

Outputs timing information of compilation stages.

Force optimisations on or off one at a time.

Delays FREETMPS from the end of each statement to the end of the each basic block.

Delays FREETMPS from the end of each statement to the end of the group of basic blocks
forming a loop. At most one of the freetmps-each-* options can be used.

Omits generating code for handling perl's tainting mechanism.

Optimisation level (n = 0, 1, 2, ...). means . Currently, sets
and sets .

Note that lives in the subdirectory of your perl library directory. The utility called
may also be used to help make use of this compiler.

Plenty. Current status: experimental.

These aren't really bugs but they are constructs which are heavily tied to perl's compile-and-go
implementation and with which this compiler backend cannot cope.

Standard perl calculates the target of "next", "last", and "redo" at run-time. The compiler calculates the
targets at compile-time. For example, the program

Perl version 5.8.6 documentation - B::CC

Page 2http://perldoc.perl.org

-Dp

-Dq

-Dl

-Dt

-f

-ffreetmps-each-bblock

-ffreetmps-each-loop

-fomit-taint

-On

-O -O1 -O1
-ffreetmps-each-bblock -O2 -ffreetmps-each-loop

pp_nextstate

cc_harness B
perlcc

EXAMPLES

BUGS

DIFFERENCES

perl -MO=CC,-O2,-ofoo.c foo.pl
perl cc_harness -o foo foo.c

perl -MO=CC,-mFoo,-oFoo.c Foo.pm
perl cc_harness -shared -c -o Foo.so Foo.c

sub skip_on_odd { next NUMBER if $_[0] % 2 }

Loops

produces the output

with standard perl but gives a compile-time error with the compiler.

The context (scalar or array) of the ".." operator determines whether it behaves as a range or a
flip/flop. Standard perl delays until runtime the decision of which context it is in but the compiler needs
to know the context at compile-time. For example,

generates the output

with standard Perl but gives a compile-time error with compiled Perl.

Compiled Perl programs use native C arithemtic much more frequently than standard perl. Operations
on large numbers or on boundary cases may produce different behaviour.

Features of standard perl such as which have been deprecated in standard perl since Perl5 was
released have not been implemented in the compiler.

Malcolm Beattie,

Perl version 5.8.6 documentation - B::CC

Page 3http://perldoc.perl.org

NUMBER: for ($i = 0; $i < 5; $i++) {
skip_on_odd($i);
print $i;

}

024

@a = (4,6,1,0,0,1);
sub range { (shift @a)..(shift @a) }
print range();
while (@a) { print scalar(range()) }

456123E0

Context of ".."

Arithmetic

Deprecated features
$[

mbeattie@sable.ox.ac.uk

AUTHOR

