
carp - warn of errors (from perspective of caller)

cluck - warn of errors with stack backtrace (not exported by default)

croak - die of errors (from perspective of caller)

confess - die of errors with stack backtrace

shortmess - return the message that carp and croak produce

longmess - return the message that cluck and confess produce

The Carp routines are useful in your own modules because they act like die() or warn(), but with a
message which is more likely to be useful to a user of your module. In the case of cluck, confess, and
longmess that context is a summary of every call in the call-stack. For a shorter message you can use
carp, croak or shortmess which report the error as being from where your module was called. There is
no guarantee that that is where the error was, but it is a good educated guess.

You can also alter the way the output and logic of works, by changing some global variables in
the namespace. See the section on below.

Here is a more complete description of how shortmess works. What it does is search the call-stack for
a function call stack where it hasn't been told that there shouldn't be an error. If every call is marked
safe, it then gives up and gives a full stack backtrace instead. In other words it presumes that the first
likely looking potential suspect is guilty. Its rules for telling whether a call shouldn't generate errors
work as follows:

1. Any call from a package to itself is safe.

2. Packages claim that there won't be errors on calls to or from packages explicitly marked as
safe by inclusion in @CARP_NOT, or (if that array is empty) @ISA. The ability to override
what @ISA says is new in 5.8.

3. The trust in item 2 is transitive. If A trusts B, and B trusts C, then A trusts C. So if you do not
override @ISA with @CARP_NOT, then this trust relationship is identical to, "inherits from".

4. Any call from an internal Perl module is safe. (Nothing keeps user modules from marking
themselves as internal to Perl, but this practice is discouraged.)

5. Any call to Carp is safe. (This rule is what keeps it from reporting the error where you call
carp/croak/shortmess.)

As a debugging aid, you can force Carp to treat a croak as a confess and a carp as a cluck across
modules. In other words, force a detailed stack trace to be given. This can be very helpful when trying
to understand why, or from where, a warning or error is being generated.

Perl version 5.8.6 documentation - Carp

Page 1http://perldoc.perl.org

NAME

SYNOPSIS

DESCRIPTION

use Carp;
croak "We’re outta here!";

use Carp qw(cluck);
cluck "This is how we got here!";

print FH Carp::shortmess("This will have caller’s details added");
print FH Carp::longmess("This will have stack backtrace added");

Carp
Carp GLOBAL VARIABLES

Forcing a Stack Trace
all

This feature is enabled by 'importing' the non-existent symbol 'verbose'. You would typically enable it
by saying

or by including the string in the PERL5OPT environment variable.

Alternately, you can set the global variable to true. See the
section below.

This variable determines how many call frames are to be skipped when reporting where an error
occurred on a call to one of 's functions. For example:

This would make Carp report the error as coming from 's caller, rather than from 's caller,
as it normally would.

Defaults to .

This variable determines how many characters of a string-eval are to be shown in the output. Use a
value of to show all text.

Defaults to .

This variable determines how many characters of each argument to a function to print. Use a value of
to show the full length of the argument.

Defaults to .

This variable determines how many arguments to each function to show. Use a value of to show all
arguments to a function call.

Defaults to .

This variable makes use the function at all times. This effectively means that all calls
to become and all calls to become .

Note, this is analogous to using .

Defaults to .

The Carp routines don't handle exception objects currently. If called with a first argument that is a
reference, they simply call die() or warn(), as appropriate.

Perl version 5.8.6 documentation - Carp

Page 2http://perldoc.perl.org

perl -MCarp=verbose script.pl

$Carp::CarpLevel = 1;
sub bar { or _error(’Wrong input’) }
sub _error { Carp::carp(@_) }

MCarp=verbose

$Carp::Verbose GLOBAL VARIABLES

Carp

bar _error

0

0

0

0

64

0

8

Carp longmess
carp cluck croak confess

use Carp ’verbose’

0

GLOBAL VARIABLES

BUGS

$Carp::CarpLevel

$Carp::MaxEvalLen

$Carp::MaxArgLen

$Carp::MaxArgNums

$Carp::Verbose

