
DB_File - Perl5 access to Berkeley DB version 1.x

is a module which allows Perl programs to make use of the facilities provided by Berkeley
DB version 1.x (if you have a newer version of DB, see

). It is assumed that you have a copy of the Berkeley DB manual pages at hand when reading
this documentation. The interface defined here mirrors the Berkeley DB interface closely.

Berkeley DB is a C library which provides a consistent interface to a number of database formats.
provides an interface to all three of the database types currently supported by Berkeley DB.

The file types are:

Perl version 5.8.6 documentation - DB_File

Page 1http://perldoc.perl.org

NAME

SYNOPSIS

DESCRIPTION

use DB_File;

[$X =] tie %hash, ’DB_File’, [$filename, $flags, $mode, $DB_HASH] ;
[$X =] tie %hash, ’DB_File’, $filename, $flags, $mode, $DB_BTREE ;
[$X =] tie @array, ’DB_File’, $filename, $flags, $mode, $DB_RECNO ;

$status = $X->del($key [, $flags]) ;
$status = $X->put($key, $value [, $flags]) ;
$status = $X->get($key, $value [, $flags]) ;
$status = $X->seq($key, $value, $flags) ;
$status = $X->sync([$flags]) ;
$status = $X->fd ;

BTREE only
$count = $X->get_dup($key) ;
@list = $X->get_dup($key) ;
%list = $X->get_dup($key, 1) ;
$status = $X->find_dup($key, $value) ;
$status = $X->del_dup($key, $value) ;

RECNO only
$a = $X->length;
$a = $X->pop ;
$X->push(list);
$a = $X->shift;
$X->unshift(list);
@r = $X->splice(offset, length, elements);

DBM Filters
$old_filter = $db->filter_store_key (sub { ... }) ;
$old_filter = $db->filter_store_value(sub { ... }) ;
$old_filter = $db->filter_fetch_key (sub { ... }) ;
$old_filter = $db->filter_fetch_value(sub { ... }) ;

untie %hash ;
untie @array ;

DB_File

DB_File

DB_HASH

Using DB_File with Berkeley DB version 2 or
greater

This database type allows arbitrary key/value pairs to be stored in data files. This is
equivalent to the functionality provided by other hashing packages like DBM, NDBM, ODBM,
GDBM, and SDBM. Remember though, the files created using DB_HASH are not
compatible with any of the other packages mentioned.

A default hashing algorithm, which will be adequate for most applications, is built into
Berkeley DB. If you do need to use your own hashing algorithm it is possible to write your
own in Perl and have use it instead.

The btree format allows arbitrary key/value pairs to be stored in a sorted, balanced binary
tree.

As with the DB_HASH format, it is possible to provide a user defined Perl routine to perform
the comparison of keys. By default, though, the keys are stored in lexical order.

DB_RECNO allows both fixed-length and variable-length flat text files to be manipulated
using the same key/value pair interface as in DB_HASH and DB_BTREE. In this case the
key will consist of a record (line) number.

Although is intended to be used with Berkeley DB version 1, it can also be used with version
2, 3 or 4. In this case the interface is limited to the functionality provided by Berkeley DB 1.x.
Anywhere the version 2 or greater interface differs, arranges for it to work like version 1. This
feature allows scripts that were built with version 1 to be migrated to version 2 or greater
without any changes.

If you want to make use of the new features available in Berkeley DB 2.x or greater, use the Perl
module instead.

The database file format has changed multiple times in Berkeley DB version 2, 3 and 4. If you
cannot recreate your databases, you must dump any existing databases with either the or
the utility that comes with Berkeley DB. Once you have rebuilt DB_File to use Berkeley
DB version 2 or greater, your databases can be recreated using . Refer to the Berkeley DB
documentation for further details.

Please read before using version 2.x or greater of Berkeley DB with DB_File.

allows access to Berkeley DB files using the tie() mechanism in Perl 5 (for full details, see
). This facility allows to access Berkeley DB files using either an associative

array (for DB_HASH & DB_BTREE file types) or an ordinary array (for the DB_RECNO file type).

In addition to the tie() interface, it is also possible to access most of the functions provided in the
Berkeley DB API directly. See .

Berkeley DB uses the function dbopen() to open or create a database. Here is the C prototype for
dbopen():

The parameter is an enumeration which specifies which of the 3 interface methods (DB_HASH,
DB_BTREE or DB_RECNO) is to be used. Depending on which of these is actually chosen, the final
parameter, points to a data structure which allows tailoring of the specific interface method.

Perl version 5.8.6 documentation - DB_File

Page 2http://perldoc.perl.org

DB_File

DB_BTREE

DB_RECNO

DB_File

DB_File
DB_File

BerkeleyDB

Note:

DB_File
DB_File

Using DB_File with Berkeley DB version 2 or greater

Interface to Berkeley DB

Opening a Berkeley DB Database File

db_dump
db_dump185

db_load

type

COPYRIGHT

"tie()" in perlfunc

THE API INTERFACE

openinfo

DB*
dbopen (const char * file, int flags, int mode,

DBTYPE type, const void * openinfo)

This interface is handled slightly differently in . Here is an equivalent call using :

The , and parameters are the direct equivalent of their dbopen() counterparts.
The final parameter $DB_HASH performs the function of both the and parameters in
dbopen().

In the example above $DB_HASH is actually a pre-defined reference to a hash object. has
three of these pre-defined references. Apart from $DB_HASH, there is also $DB_BTREE and
$DB_RECNO.

The keys allowed in each of these pre-defined references is limited to the names used in the
equivalent C structure. So, for example, the $DB_HASH reference will only allow keys called ,

, , , and .

To change one of these elements, just assign to it like this:

The three predefined variables $DB_HASH, $DB_BTREE and $DB_RECNO are usually adequate for
most applications. If you do need to create extra instances of these objects, constructors are available
for each file type.

Here are examples of the constructors and the valid options available for DB_HASH, DB_BTREE and
DB_RECNO respectively.

The values stored in the hashes above are mostly the direct equivalent of their C counterpart. Like
their C counterparts, all are set to a default values - that means you don't have to set of the values
when you only want to change one. Here is an example:

Perl version 5.8.6 documentation - DB_File

Page 3http://perldoc.perl.org

DB_File DB_File

DB_File

tie %array, ’DB_File’, $filename, $flags, $mode, $DB_HASH ;

$DB_HASH->{’cachesize’} = 10000 ;

$a = new DB_File::HASHINFO ;
$a->{’bsize’} ;
$a->{’cachesize’} ;
$a->{’ffactor’};
$a->{’hash’} ;
$a->{’lorder’} ;
$a->{’nelem’} ;

$b = new DB_File::BTREEINFO ;
$b->{’flags’} ;
$b->{’cachesize’} ;
$b->{’maxkeypage’} ;
$b->{’minkeypage’} ;
$b->{’psize’} ;
$b->{’compare’} ;
$b->{’prefix’} ;
$b->{’lorder’} ;

$c = new DB_File::RECNOINFO ;
$c->{’bval’} ;
$c->{’cachesize’} ;
$c->{’psize’} ;
$c->{’flags’} ;
$c->{’lorder’} ;
$c->{’reclen’} ;
$c->{’bfname’} ;

filename flags mode
type openinfo

bsize
cachesize ffactor hash lorder nelem

all

A few of the options need extra discussion here. When used, the C equivalent of the keys ,
and store pointers to C functions. In these keys are used to store

references to Perl subs. Below are templates for each of the subs:

See for an example of using the template.

If you are using the DB_RECNO interface and you intend making use of , you should check out
.

It is possible to omit some or all of the final 4 parameters in the call to and let them take default
values. As DB_HASH is the most common file format used, the call:

is equivalent to:

It is also possible to omit the filename parameter as well, so the call:

is equivalent to:

Perl version 5.8.6 documentation - DB_File

Page 4http://perldoc.perl.org

$a = new DB_File::HASHINFO ;
$a->{’cachesize’} = 12345 ;
tie %y, ’DB_File’, "filename", $flags, 0777, $a ;

sub hash
{

my ($data) = @_ ;
...
return the hash value for $data

return $hash ;
}

sub compare
{

my ($key, $key2) = @_ ;
...
return 0 if $key1 eq $key2
-1 if $key1 lt $key2
1 if $key1 gt $key2
return (-1 , 0 or 1) ;

}

sub prefix
{

my ($key, $key2) = @_ ;
...
return number of bytes of $key2 which are
necessary to determine that it is greater than $key1
return $bytes ;

}

tie %A, "DB_File", "filename" ;

tie %A, "DB_File", "filename", O_CREAT|O_RDWR, 0666, $DB_HASH ;

tie %A, "DB_File" ;

hash
compare prefix

compare

bval

tie

DB_File

Changing the BTREE sort order

The ’bval’ Option

Default Parameters

See for a discussion on the use of in place of a filename.

Berkeley DB allows the creation of in-memory databases by using NULL (that is, a in C)
in place of the filename. uses instead of NULL to provide this functionality.

The DB_HASH file format is probably the most commonly used of the three file formats that
supports. It is also very straightforward to use.

This example shows how to create a database, add key/value pairs to the database, delete
keys/value pairs and finally how to enumerate the contents of the database.

here is the output:

Note that the like ordinary associative arrays, the order of the keys retrieved is in an apparently
random order.

Perl version 5.8.6 documentation - DB_File

Page 5http://perldoc.perl.org

tie %A, "DB_File", undef, O_CREAT|O_RDWR, 0666, $DB_HASH ;

use warnings ;
use strict ;
use DB_File ;
our (%h, $k, $v) ;

unlink "fruit" ;
tie %h, "DB_File", "fruit", O_RDWR|O_CREAT, 0666, $DB_HASH

or die "Cannot open file ’fruit’: $!\n";

Add a few key/value pairs to the file
$h{"apple"} = "red" ;
$h{"orange"} = "orange" ;
$h{"banana"} = "yellow" ;
$h{"tomato"} = "red" ;

Check for existence of a key
print "Banana Exists\n\n" if $h{"banana"} ;

Delete a key/value pair.
delete $h{"apple"} ;

print the contents of the file
while (($k, $v) = each %h)
{ print "$k -> $v\n" }

untie %h ;

Banana Exists

orange -> orange
tomato -> red
banana -> yellow

In Memory Databases undef

(char *)0
undef

In Memory Databases

A Simple Example

DB_File

DB_File

DB_HASH

The DB_BTREE format is useful when you want to store data in a given order. By default the keys will
be stored in lexical order, but as you will see from the example shown in the next section, it is very
easy to define your own sorting function.

This script shows how to override the default sorting algorithm that BTREE uses. Instead of using the
normal lexical ordering, a case insensitive compare function will be used.

Here is the output from the code above.

There are a few point to bear in mind if you want to change the ordering in a BTREE database:

Perl version 5.8.6 documentation - DB_File

Page 6http://perldoc.perl.org

DB_BTREE

Changing the BTREE sort order

use warnings ;
use strict ;
use DB_File ;

my %h ;

sub Compare
{

my ($key1, $key2) = @_ ;
"\L$key1" cmp "\L$key2" ;

}

specify the Perl sub that will do the comparison
$DB_BTREE->{’compare’} = \&Compare ;

unlink "tree" ;
tie %h, "DB_File", "tree", O_RDWR|O_CREAT, 0666, $DB_BTREE

or die "Cannot open file ’tree’: $!\n" ;

Add a key/value pair to the file
$h{’Wall’} = ’Larry’ ;
$h{’Smith’} = ’John’ ;
$h{’mouse’} = ’mickey’ ;
$h{’duck’} = ’donald’ ;

Delete
delete $h{"duck"} ;

Cycle through the keys printing them in order.
Note it is not necessary to sort the keys as
the btree will have kept them in order automatically.
foreach (keys %h)
{ print "$_\n" }

untie %h ;

mouse
Smith
Wall

1. The new compare function must be specified when you create the database.

2. You cannot change the ordering once the database has been created. Thus you must use
the same compare function every time you access the database.

3 Duplicate keys are entirely defined by the comparison function. In the case-insensitive
example above, the keys: 'KEY' and 'key' would be considered duplicates, and assigning to
the second one would overwrite the first. If duplicates are allowed for (with the R_DUP flag
discussed below), only a single copy of duplicate keys is stored in the database --- so (again
with example above) assigning three values to the keys: 'KEY', 'Key', and 'key' would leave
just the first key: 'KEY' in the database with three values. For some situations this results in
information loss, so care should be taken to provide fully qualified comparison functions
when necessary. For example, the above comparison routine could be modified to
additionally compare case-sensitively if two keys are equal in the case insensitive
comparison:

And now you will only have duplicates when the keys themselves are truly the same. (note:
in versions of the db library prior to about November 1996, such duplicate keys were
retained so it was possible to recover the original keys in sets of keys that compared as
equal).

The BTREE file type optionally allows a single key to be associated with an arbitrary number of
values. This option is enabled by setting the flags element of to R_DUP when creating
the database.

There are some difficulties in using the tied hash interface if you want to manipulate a BTREE
database with duplicate keys. Consider this code:

Perl version 5.8.6 documentation - DB_File

Page 7http://perldoc.perl.org

sub compare {
my($key1, $key2) = @_;
lc $key1 cmp lc $key2 ||
$key1 cmp $key2;

}

use warnings ;
use strict ;
use DB_File ;

my ($filename, %h) ;

$filename = "tree" ;
unlink $filename ;

Enable duplicate records
$DB_BTREE->{’flags’} = R_DUP ;

tie %h, "DB_File", $filename, O_RDWR|O_CREAT, 0666, $DB_BTREE
or die "Cannot open $filename: $!\n";

Add some key/value pairs to the file
$h{’Wall’} = ’Larry’ ;
$h{’Wall’} = ’Brick’ ; # Note the duplicate key
$h{’Wall’} = ’Brick’ ; # Note the duplicate key and value
$h{’Smith’} = ’John’ ;

Handling Duplicate Keys

$DB_BTREE

Here is the output:

As you can see 3 records have been successfully created with key - the only thing is, when they
are retrieved from the database they to have the same value, namely . The problem is
caused by the way that the associative array interface works. Basically, when the associative array
interface is used to fetch the value associated with a given key, it will only ever retrieve the first value.

Although it may not be immediately obvious from the code above, the associative array interface can
be used to write values with duplicate keys, but it cannot be used to read them back from the
database.

The way to get around this problem is to use the Berkeley DB API method called . This method
allows sequential access to key/value pairs. See for details of both the
method and the API in general.

Here is the script above rewritten using the API method.

Perl version 5.8.6 documentation - DB_File

Page 8http://perldoc.perl.org

$h{’mouse’} = ’mickey’ ;

iterate through the associative array
and print each key/value pair.
foreach (sort keys %h)
{ print "$_ -> $h{$_}\n" }

untie %h ;

Smith -> John
Wall -> Larry
Wall -> Larry
Wall -> Larry
mouse -> mickey

use warnings ;
use strict ;
use DB_File ;

my ($filename, $x, %h, $status, $key, $value) ;

$filename = "tree" ;
unlink $filename ;

Enable duplicate records
$DB_BTREE->{’flags’} = R_DUP ;

$x = tie %h, "DB_File", $filename, O_RDWR|O_CREAT, 0666, $DB_BTREE
or die "Cannot open $filename: $!\n";

Add some key/value pairs to the file
$h{’Wall’} = ’Larry’ ;
$h{’Wall’} = ’Brick’ ; # Note the duplicate key
$h{’Wall’} = ’Brick’ ; # Note the duplicate key and value
$h{’Smith’} = ’John’ ;
$h{’mouse’} = ’mickey’ ;

Wall
Larry

seq
seq

seq

seem

THE API INTERFACE

that prints:

This time we have got all the key/value pairs, including the multiple values associated with the key
.

To make life easier when dealing with duplicate keys, comes with a few utility methods.

The method assists in reading duplicate values from BTREE databases. The method can
take the following forms:

In a scalar context the method returns the number of values associated with the key, .

In list context, it returns all the values which match . Note that the values will be returned in an
apparently random order.

In list context, if the second parameter is present and evaluates TRUE, the method returns an
associative array. The keys of the associative array correspond to the values that matched in the
BTREE and the values of the array are a count of the number of times that particular value occurred
in the BTREE.

So assuming the database created above, we can use like this:

Perl version 5.8.6 documentation - DB_File

Page 9http://perldoc.perl.org

iterate through the btree using seq
and print each key/value pair.
$key = $value = 0 ;
for ($status = $x->seq($key, $value, R_FIRST) ;

$status == 0 ;
$status = $x->seq($key, $value, R_NEXT))

{ print "$key -> $value\n" }

undef $x ;
untie %h ;

Smith -> John
Wall -> Brick
Wall -> Brick
Wall -> Larry
mouse -> mickey

$count = $x->get_dup($key) ;
@list = $x->get_dup($key) ;
%list = $x->get_dup($key, 1) ;

use warnings ;
use strict ;
use DB_File ;

my ($filename, $x, %h) ;

$filename = "tree" ;

Enable duplicate records
$DB_BTREE->{’flags’} = R_DUP ;

$x = tie %h, "DB_File", $filename, O_RDWR|O_CREAT, 0666, $DB_BTREE

Wall

get_dup

$key

$key

get_dup

DB_File

The get_dup() Method

and it will print:

This method checks for the existence of a specific key/value pair. If the pair exists, the cursor is left
pointing to the pair and the method returns 0. Otherwise the method returns a non-zero value.

Assuming the database from the previous example:

Perl version 5.8.6 documentation - DB_File

Page 10http://perldoc.perl.org

or die "Cannot open $filename: $!\n";

my $cnt = $x->get_dup("Wall") ;
print "Wall occurred $cnt times\n" ;

my %hash = $x->get_dup("Wall", 1) ;
print "Larry is there\n" if $hash{’Larry’} ;
print "There are $hash{’Brick’} Brick Walls\n" ;

my @list = sort $x->get_dup("Wall") ;
print "Wall => [@list]\n" ;

@list = $x->get_dup("Smith") ;
print "Smith => [@list]\n" ;

@list = $x->get_dup("Dog") ;
print "Dog => [@list]\n" ;

Wall occurred 3 times
Larry is there
There are 2 Brick Walls
Wall => [Brick Brick Larry]
Smith => [John]
Dog => []

$status = $X->find_dup($key, $value) ;

use warnings ;
use strict ;
use DB_File ;

my ($filename, $x, %h, $found) ;

$filename = "tree" ;

Enable duplicate records
$DB_BTREE->{’flags’} = R_DUP ;

$x = tie %h, "DB_File", $filename, O_RDWR|O_CREAT, 0666, $DB_BTREE
or die "Cannot open $filename: $!\n";

$found = ($x->find_dup("Wall", "Larry") == 0 ? "" : "not") ;
print "Larry Wall is $found there\n" ;

The find_dup() Method

prints this

This method deletes a specific key/value pair. It returns 0 if they exist and have been deleted
successfully. Otherwise the method returns a non-zero value.

Again assuming the existence of the database

prints this

The BTREE interface has a feature which allows partial keys to be matched. This functionality is
available when the method is used along with the R_CURSOR flag.

Here is the relevant quote from the dbopen man page where it defines the use of the R_CURSOR

Perl version 5.8.6 documentation - DB_File

Page 11http://perldoc.perl.org

$found = ($x->find_dup("Wall", "Harry") == 0 ? "" : "not") ;
print "Harry Wall is $found there\n" ;

undef $x ;
untie %h ;

Larry Wall is there
Harry Wall is not there

$status = $X->del_dup($key, $value) ;

use warnings ;
use strict ;
use DB_File ;

my ($filename, $x, %h, $found) ;

$filename = "tree" ;

Enable duplicate records
$DB_BTREE->{’flags’} = R_DUP ;

$x = tie %h, "DB_File", $filename, O_RDWR|O_CREAT, 0666, $DB_BTREE
or die "Cannot open $filename: $!\n";

$x->del_dup("Wall", "Larry") ;

$found = ($x->find_dup("Wall", "Larry") == 0 ? "" : "not") ;
print "Larry Wall is $found there\n" ;

undef $x ;
untie %h ;

Larry Wall is not there

$x->seq($key, $value, R_CURSOR) ;

The del_dup() Method

Matching Partial Keys

tree

seq
only

flag with seq:

In the example script below, the sub uses this feature to find and print the first matching
key/value pair given a partial key.

Perl version 5.8.6 documentation - DB_File

Page 12http://perldoc.perl.org

Note, for the DB_BTREE access method, the returned key is not
necessarily an exact match for the specified key. The returned key
is the smallest key greater than or equal to the specified key,
permitting partial key matches and range searches.

use warnings ;
use strict ;
use DB_File ;
use Fcntl ;

my ($filename, $x, %h, $st, $key, $value) ;

sub match
{

my $key = shift ;
my $value = 0;
my $orig_key = $key ;
$x->seq($key, $value, R_CURSOR) ;
print "$orig_key\t-> $key\t-> $value\n" ;

}

$filename = "tree" ;
unlink $filename ;

$x = tie %h, "DB_File", $filename, O_RDWR|O_CREAT, 0666, $DB_BTREE
or die "Cannot open $filename: $!\n";

Add some key/value pairs to the file
$h{’mouse’} = ’mickey’ ;
$h{’Wall’} = ’Larry’ ;
$h{’Walls’} = ’Brick’ ;
$h{’Smith’} = ’John’ ;

$key = $value = 0 ;
print "IN ORDER\n" ;
for ($st = $x->seq($key, $value, R_FIRST) ;

$st == 0 ;
$st = $x->seq($key, $value, R_NEXT))

{ print "$key -> $value\n" }

print "\nPARTIAL MATCH\n" ;

match "Wa" ;
match "A" ;
match "a" ;

undef $x ;

match

Here is the output:

DB_RECNO provides an interface to flat text files. Both variable and fixed length records are
supported.

In order to make RECNO more compatible with Perl, the array offset for all RECNO arrays begins at 0
rather than 1 as in Berkeley DB.

As with normal Perl arrays, a RECNO array can be accessed using negative indexes. The index -1
refers to the last element of the array, -2 the second last, and so on. Attempting to access an element
before the start of the array will raise a fatal run-time error.

The operation of the bval option warrants some discussion. Here is the definition of bval from the
Berkeley DB 1.85 recno manual page:

The second sentence is wrong. In actual fact bval will only default to when the openinfo
parameter in dbopen is NULL. If a non-NULL openinfo parameter is used at all, the value that
happens to be in bval will be used. That means you always have to specify bval when making use of
any of the options in the openinfo parameter. This documentation error will be fixed in the next
release of Berkeley DB.

That clarifies the situation with regards Berkeley DB itself. What about ? Well, the behavior
defined in the quote above is quite useful, so conforms to it.

That means that you can specify other options (e.g. cachesize) and still have bval default to for
variable length records, and space for fixed length records.

Also note that the bval option only allows you to specify a single byte as a delimiter.

Here is a simple example that uses RECNO (if you are using a version of Perl earlier than 5.004_57
this example won't work -- see for a workaround).

Perl version 5.8.6 documentation - DB_File

Page 13http://perldoc.perl.org

untie %h ;

IN ORDER
Smith -> John
Wall -> Larry
Walls -> Brick
mouse -> mickey

PARTIAL MATCH
Wa -> Wall -> Larry
A -> Smith -> John
a -> mouse -> mickey

The delimiting byte to be used to mark the end of a
record for variable-length records, and the pad charac-
ter for fixed-length records. If no value is speci-
fied, newlines (‘‘\n’’) are used to mark the end of
variable-length records and fixed-length records are
padded with spaces.

use warnings ;
use strict ;

DB_RECNO

The 'bval' Option

A Simple Example

"\n"

"\n"

DB_File
DB_File

Extra RECNO Methods

Here is the output from the script:

If you are using a version of Perl earlier than 5.004_57, the tied array interface is quite limited. In the
example script above , , , or determining the array length will not work with
a tied array.

To make the interface more useful for older versions of Perl, a number of methods are supplied with
to simulate the missing array operations. All these methods are accessed via the object

returned from the tie call.

Perl version 5.8.6 documentation - DB_File

Page 14http://perldoc.perl.org

use DB_File ;

my $filename = "text" ;
unlink $filename ;

my @h ;
tie @h, "DB_File", $filename, O_RDWR|O_CREAT, 0666, $DB_RECNO

or die "Cannot open file ’text’: $!\n" ;

Add a few key/value pairs to the file
$h[0] = "orange" ;
$h[1] = "blue" ;
$h[2] = "yellow" ;

push @h, "green", "black" ;

my $elements = scalar @h ;
print "The array contains $elements entries\n" ;

my $last = pop @h ;
print "popped $last\n" ;

unshift @h, "white" ;
my $first = shift @h ;
print "shifted $first\n" ;

Check for existence of a key
print "Element 1 Exists with value $h[1]\n" if $h[1] ;

use a negative index
print "The last element is $h[-1]\n" ;
print "The 2nd last element is $h[-2]\n" ;

untie @h ;

The array contains 5 entries
popped black
shifted white
Element 1 Exists with value blue
The last element is green
The 2nd last element is yellow

Extra RECNO Methods

push pop shift unshift

DB_File

Here are the methods:

Pushes the elements of to the end of the array.

Removes and returns the last element of the array.

Removes and returns the first element of the array.

Pushes the elements of to the start of the array.

Returns the number of elements in the array.

Returns a splice of the array.

Here is a more complete example that makes use of some of the methods described above. It also
makes use of the API interface directly (see).

Perl version 5.8.6 documentation - DB_File

Page 15http://perldoc.perl.org

$X->push(list) ;

$value = $X->pop ;

$X->shift

$X->unshift(list) ;

$X->length

$X->splice(offset, length, elements);

list

list

Another Example

THE API INTERFACE

use warnings ;
use strict ;
my (@h, $H, $file, $i) ;
use DB_File ;
use Fcntl ;

$file = "text" ;

unlink $file ;

$H = tie @h, "DB_File", $file, O_RDWR|O_CREAT, 0666, $DB_RECNO
or die "Cannot open file $file: $!\n" ;

first create a text file to play with
$h[0] = "zero" ;
$h[1] = "one" ;
$h[2] = "two" ;
$h[3] = "three" ;
$h[4] = "four" ;

Print the records in order.
#
The length method is needed here because evaluating a tied
array in a scalar context does not return the number of
elements in the array.

print "\nORIGINAL\n" ;
foreach $i (0 .. $H->length - 1) {

print "$i: $h[$i]\n" ;
}

and this is what it outputs:

Perl version 5.8.6 documentation - DB_File

Page 16http://perldoc.perl.org

use the push & pop methods
$a = $H->pop ;
$H->push("last") ;
print "\nThe last record was [$a]\n" ;

and the shift & unshift methods
$a = $H->shift ;
$H->unshift("first") ;
print "The first record was [$a]\n" ;

Use the API to add a new record after record 2.
$i = 2 ;
$H->put($i, "Newbie", R_IAFTER) ;

and a new record before record 1.
$i = 1 ;
$H->put($i, "New One", R_IBEFORE) ;

delete record 3
$H->del(3) ;

now print the records in reverse order
print "\nREVERSE\n" ;
for ($i = $H->length - 1 ; $i >= 0 ; -- $i)
{ print "$i: $h[$i]\n" }

same again, but use the API functions instead
print "\nREVERSE again\n" ;
my ($s, $k, $v) = (0, 0, 0) ;
for ($s = $H->seq($k, $v, R_LAST) ;

$s == 0 ;
$s = $H->seq($k, $v, R_PREV))

{ print "$k: $v\n" }

undef $H ;
untie @h ;

ORIGINAL
0: zero
1: one
2: two
3: three
4: four

The last record was [four]
The first record was [zero]

REVERSE
5: last
4: three
3: Newbie

Notes:

1. Rather than iterating through the array, like this:

it is necessary to use either this:

or this:

2. Notice that both times the method was used the record index was specified using a
variable, , rather than the literal value itself. This is because will return the record
number of the inserted line via that parameter.

As well as accessing Berkeley DB using a tied hash or array, it is also possible to make direct use of
most of the API functions defined in the Berkeley DB documentation.

To do this you need to store a copy of the object returned from the tie.

Once you have done that, you can access the Berkeley DB API functions as methods
directly like this:

If you have saved a copy of the object returned from , the underlying database file will
be closed until both the tied variable is untied and all copies of the saved object are destroyed.

See for more details.

All the functions defined in are available except for close() and dbopen() itself. The

Perl version 5.8.6 documentation - DB_File

Page 17http://perldoc.perl.org

2: one
1: New One
0: first

REVERSE again
5: last
4: three
3: Newbie
2: one
1: New One
0: first

foreach $i (@h)

foreach $i (0 .. $H->length - 1)

for ($a = $H->get($k, $v, R_FIRST) ;
$a == 0 ;
$a = $H->get($k, $v, R_NEXT))

$db = tie %hash, "DB_File", "filename" ;

$db->put($key, $value, R_NOOVERWRITE) ;

use DB_File ;
$db = tie %hash, "DB_File", "filename"

or die "Cannot tie filename: $!" ;
...
undef $db ;
untie %hash ;

@h

put
$i put

tie

THE API INTERFACE

DB_File

Important:

DB_File

not

The untie() Gotcha

dbopen

method interface to the supported functions have been implemented to mirror the way Berkeley DB
works whenever possible. In particular note that:

The methods return a status value. All return 0 on success. All return -1 to signify an error
and set to the exact error code. The return code 1 generally (but not always) means that
the key specified did not exist in the database.

Other return codes are defined. See below and in the Berkeley DB documentation for
details. The Berkeley DB documentation should be used as the definitive source.

Whenever a Berkeley DB function returns data via one of its parameters, the equivalent
method does exactly the same.

If you are careful, it is possible to mix API calls with the tied hash/array interface in the same
piece of code. Although only a few of the methods used to implement the tied interface
currently make use of the cursor, you should always assume that the cursor has been
changed any time the tied hash/array interface is used. As an example, this code will
probably not do what you expect:

The code above can be rearranged to get around the problem, like this:

All the constants defined in for use in the flags parameters in the methods defined below are
also available. Refer to the Berkeley DB documentation for the precise meaning of the flags values.

Below is a list of the methods available.

Given a key () this method reads the value associated with it from the database. The
value read from the database is returned in the parameter.

If the key does not exist the method returns 1.

Perl version 5.8.6 documentation - DB_File

Page 18http://perldoc.perl.org

$!

$key
$value

DB_File

$status = $X->get($key, $value [, $flags]) ;

$X = tie %x, ’DB_File’, $filename, O_RDWR|O_CREAT, 0777,
$DB_BTREE

or die "Cannot tie $filename: $!" ;

Get the first key/value pair and set the cursor
$X->seq($key, $value, R_FIRST) ;

this line will modify the cursor
$count = scalar keys %x ;

Get the second key/value pair.
oops, it didn’t, it got the last key/value pair!
$X->seq($key, $value, R_NEXT) ;

$X = tie %x, ’DB_File’, $filename, O_RDWR|O_CREAT, 0777,
$DB_BTREE

or die "Cannot tie $filename: $!" ;

this line will modify the cursor
$count = scalar keys %x ;

Get the first key/value pair and set the cursor
$X->seq($key, $value, R_FIRST) ;

Get the second key/value pair.
worked this time.
$X->seq($key, $value, R_NEXT) ;

dbopen

No flags are currently defined for this method.

Stores the key/value pair in the database.

If you use either the R_IAFTER or R_IBEFORE flags, the parameter will have the
record number of the inserted key/value pair set.

Valid flags are R_CURSOR, R_IAFTER, R_IBEFORE, R_NOOVERWRITE and
R_SETCURSOR.

Removes all key/value pairs with key from the database.

A return code of 1 means that the requested key was not in the database.

R_CURSOR is the only valid flag at present.

Returns the file descriptor for the underlying database.

See for an explanation for why you should not use to lock
your database.

This interface allows sequential retrieval from the database. See for full details.

Both the and parameters will be set to the key/value pair read from the
database.

The flags parameter is mandatory. The valid flag values are R_CURSOR, R_FIRST,
R_LAST, R_NEXT and R_PREV.

Flushes any cached buffers to disk.

R_RECNOSYNC is the only valid flag at present.

A DBM Filter is a piece of code that is be used when you want to make the same
transformation to all keys and/or values in a DBM database.

There are four methods associated with DBM Filters. All work identically, and each is used to install
(or uninstall) a single DBM Filter. Each expects a single parameter, namely a reference to a sub. The
only difference between them is the place that the filter is installed.

To summarise:

If a filter has been installed with this method, it will be invoked every time you write a key to
a DBM database.

If a filter has been installed with this method, it will be invoked every time you write a value
to a DBM database.

If a filter has been installed with this method, it will be invoked every time you read a key
from a DBM database.

If a filter has been installed with this method, it will be invoked every time you read a value

Perl version 5.8.6 documentation - DB_File

Page 19http://perldoc.perl.org

$status = $X->put($key, $value [, $flags]) ;

$status = $X->del($key [, $flags]) ;

$status = $X->fd ;

$status = $X->seq($key, $value, $flags) ;

$status = $X->sync([$flags]) ;

filter_store_key

filter_store_value

filter_fetch_key

filter_fetch_value

$key

$key

fd

$key $value

Locking: The Trouble with fd

dbopen

always

DBM FILTERS

from a DBM database.

You can use any combination of the methods, from none, to all four.

All filter methods return the existing filter, if present, or in not.

To delete a filter pass to it.

When each filter is called by Perl, a local copy of will contain the key or value to be filtered.
Filtering is achieved by modifying the contents of . The return code from the filter is ignored.

Consider the following scenario. You have a DBM database that you need to share with a third-party
C application. The C application assumes that keys and values are NULL terminated.
Unfortunately when Perl writes to DBM databases it doesn't use NULL termination, so your Perl
application will have to manage NULL termination itself. When you write to the database you will have
to use something like this:

Similarly the NULL needs to be taken into account when you are considering the length of existing
keys/values.

It would be much better if you could ignore the NULL terminations issue in the main application code
and have a mechanism that automatically added the terminating NULL to all keys and values
whenever you write to the database and have them removed when you read from the database. As
I'm sure you have already guessed, this is a problem that DBM Filters can fix very easily.

Hopefully the contents of each of the filters should be self-explanatory. Both "fetch" filters remove the
terminating NULL, and both "store" filters add a terminating NULL.

Perl version 5.8.6 documentation - DB_File

Page 20http://perldoc.perl.org

undef

undef

$_
$_

The Filter

An Example -- the NULL termination problem.

all

$hash{"$key\0"} = "$value\0" ;

use warnings ;
use strict ;
use DB_File ;

my %hash ;
my $filename = "filt" ;
unlink $filename ;

my $db = tie %hash, ’DB_File’, $filename, O_CREAT|O_RDWR, 0666,
$DB_HASH

or die "Cannot open $filename: $!\n" ;

Install DBM Filters
$db->filter_fetch_key (sub { s/\0$// }) ;
$db->filter_store_key (sub { $_ .= "\0" }) ;
$db->filter_fetch_value(sub { s/\0$// }) ;
$db->filter_store_value(sub { $_ .= "\0" }) ;

$hash{"abc"} = "def" ;
my $a = $hash{"ABC"} ;
...
undef $db ;
untie %hash ;

Here is another real-life example. By default, whenever Perl writes to a DBM database it always
writes the key and value as strings. So when you use this:

the key 12345 will get stored in the DBM database as the 5 byte string "12345". If you actually want
the key to be stored in the DBM database as a C int, you will have to use when writing, and

when reading.

Here is a DBM Filter that does it:

This time only two filters have been used -- we only need to manipulate the contents of the key, so it
wasn't necessary to install any value filters.

Until version 1.72 of this module, the recommended technique for locking databases was to
flock the filehandle returned from the "fd" function. Unfortunately this technique has been shown to be
fundamentally flawed (Kudos to David Harris for tracking this down). Use it at your own peril!

The locking technique went like this.

In simple terms, this is what happens:

Perl version 5.8.6 documentation - DB_File

Page 21http://perldoc.perl.org

Another Example -- Key is a C int.

Locking: The Trouble with fd

$hash{12345} = "soemthing" ;

use warnings ;
use strict ;
use DB_File ;
my %hash ;
my $filename = "filt" ;
unlink $filename ;

my $db = tie %hash, ’DB_File’, $filename, O_CREAT|O_RDWR, 0666,
$DB_HASH

or die "Cannot open $filename: $!\n" ;

$db->filter_fetch_key (sub { $_ = unpack("i", $_) }) ;
$db->filter_store_key (sub { $_ = pack ("i", $_) }) ;
$hash{123} = "def" ;
...
undef $db ;
untie %hash ;

$db = tie(%db, ’DB_File’, ’foo.db’, O_CREAT|O_RDWR, 0644)
|| die "dbcreat foo.db $!";

$fd = $db->fd;
open(DB_FH, "+<&=$fd") || die "dup $!";
flock (DB_FH, LOCK_EX) || die "flock: $!";
...
$db{"Tom"} = "Jerry" ;
...
flock(DB_FH, LOCK_UN);
undef $db;
untie %db;
close(DB_FH);

pack
unpack

HINTS AND TIPS

DB_File

1. Use "tie" to open the database.

2. Lock the database with fd & flock.

3. Read & Write to the database.

4. Unlock and close the database.

Here is the crux of the problem. A side-effect of opening the database in step 2 is that an
initial block from the database will get read from disk and cached in memory.

To see why this is a problem, consider what can happen when two processes, say "A" and "B", both
want to update the same database using the locking steps outlined above. Assume process
"A" has already opened the database and has a write lock, but it hasn't actually updated the database
yet (it has finished step 2, but not started step 3 yet). Now process "B" tries to open the same
database - step 1 will succeed, but it will block on step 2 until process "A" releases the lock. The
important thing to notice here is that at this point in time both processes will have cached identical
initial blocks from the database.

Now process "A" updates the database and happens to change some of the data held in the initial
buffer. Process "A" terminates, flushing all cached data to disk and releasing the database lock. At
this point the database on disk will correctly reflect the changes made by process "A".

With the lock released, process "B" can now continue. It also updates the database and unfortunately
it too modifies the data that was in its initial buffer. Once that data gets flushed to disk it will overwrite
some/all of the changes process "A" made to the database.

The result of this scenario is at best a database that doesn't contain what you expect. At worst the
database will corrupt.

The above won't happen every time competing process update the same database, but it
does illustrate why the technique should not be used.

Starting with version 2.x, Berkeley DB has internal support for locking. The companion module to this
one, , provides an interface to this locking functionality. If you are serious about locking
Berkeley DB databases, I strongly recommend using .

If using isn't an option, there are a number of modules available on CPAN that can be
used to implement locking. Each one implements locking differently and has different goals in mind. It
is therefore worth knowing the difference, so that you can pick the right one for your application. Here
are the three locking wrappers:

A wrapper which creates copies of the database file for read access, so that you
have a kind of a multiversioning concurrent read system. However, updates are still serial.
Use for databases where reads may be lengthy and consistency problems may occur.

A wrapper that has the ability to lock and unlock the database while it is being
used. Avoids the tie-before-flock problem by simply re-tie-ing the database when you get or
drop a lock. Because of the flexibility in dropping and re-acquiring the lock in the middle of a
session, this can be massaged into a system that will work with long updates and/or reads if
the application follows the hints in the POD documentation.

An extremely lightweight wrapper that simply flocks a lockfile before tie-ing the
database and drops the lock after the untie. Allows one to use the same lockfile for multiple

Perl version 5.8.6 documentation - DB_File

Page 22http://perldoc.perl.org

DB_File

DB_File

DB_File

BerkeleyDB
BerkeleyDB

BerkeleyDB

Tie::DB_Lock

DB_File

Tie::DB_LockFile

DB_File

DB_File::Lock

DB_File

Safe ways to lock a database

databases to avoid deadlock problems, if desired. Use for databases where updates are
reads are quick and simple flock locking semantics are enough.

There is no technical reason why a Berkeley DB database cannot be shared by both a Perl and a C
application.

The vast majority of problems that are reported in this area boil down to the fact that C strings are
NULL terminated, whilst Perl strings are not. See for a generic way to work around
this problem.

Here is a real example. Netscape 2.0 keeps a record of the locations you visit along with the time you
last visited them in a DB_HASH database. This is usually stored in the file . The
key field in the database is the location string and the value field is the time the location was last
visited stored as a 4 byte binary value.

If you haven't already guessed, the location string is stored with a terminating NULL. This means you
need to be careful when accessing the database.

Here is a snippet of code that is loosely based on Tom Christiansen's script (available from your
nearest CPAN archive in).

Perl version 5.8.6 documentation - DB_File

Page 23http://perldoc.perl.org

Sharing Databases With C Applications

DBM FILTERS

~/.netscape/history.db

ggh
authors/id/TOMC/scripts/nshist.gz

use warnings ;
use strict ;
use DB_File ;
use Fcntl ;

my ($dotdir, $HISTORY, %hist_db, $href, $binary_time, $date) ;
$dotdir = $ENV{HOME} || $ENV{LOGNAME};

$HISTORY = "$dotdir/.netscape/history.db";

tie %hist_db, ’DB_File’, $HISTORY
or die "Cannot open $HISTORY: $!\n" ;;

Dump the complete database
while (($href, $binary_time) = each %hist_db) {

remove the terminating NULL
$href =~ s/\x00$// ;

convert the binary time into a user friendly string
$date = localtime unpack("V", $binary_time);
print "$date $href\n" ;

}

check for the existence of a specific key
remember to add the NULL
if ($binary_time = $hist_db{"http://mox.perl.com/\x00"}) {

$date = localtime unpack("V", $binary_time) ;
print "Last visited mox.perl.com on $date\n" ;

}
else {

print "Never visited mox.perl.com\n"
}

If you make use of the Berkeley DB API, it is strongly recommended that you read
.

Even if you don't currently make use of the API interface, it is still worth reading it.

Here is an example which illustrates the problem from a perspective:

When run, the script will produce this error message:

Although the error message above refers to the second tie() statement in the script, the source of the
problem is really with the untie() statement that precedes it.

Having read you will probably have already guessed that the error is caused by the extra copy
of the tied object stored in . If you haven't, then the problem boils down to the fact that the
destructor, DESTROY, will not be called until references to the tied object are destroyed. Both the
tied variable, , and above hold a reference to the object. The call to untie() will destroy the first,
but still holds a valid reference, so the destructor will not get called and the database file will
remain open. The fact that Berkeley DB then reports the attempt to open a database that is already
open via the catch-all "Invalid argument" doesn't help.

If you run the script with the flag the error message becomes:

which pinpoints the real problem. Finally the script can now be modified to fix the original problem by
destroying the API object before the untie:

Perl version 5.8.6 documentation - DB_File

Page 24http://perldoc.perl.org

untie %hist_db ;

use DB_File ;
use Fcntl ;

my %x ;
my $X ;

$X = tie %x, ’DB_File’, ’tst.fil’ , O_RDWR|O_TRUNC
or die "Cannot tie first time: $!" ;

$x{123} = 456 ;

untie %x ;

tie %x, ’DB_File’, ’tst.fil’ , O_RDWR|O_CREAT
or die "Cannot tie second time: $!" ;

untie %x ;

Cannot tie second time: Invalid argument at bad.file line 14.

untie attempted while 1 inner references still exist at bad.file line
12.

Cannot tie second time: Invalid argument at bad.file line 14.

...
$x{123} = 456 ;

The untie() Gotcha
very "The untie

Gotcha" in perltie

perltie

all

tst.fil

DB_File

DB_File$X

%x $X
$X

-w

If you look at the contents of a database file created by DB_File, there can sometimes be part of a
Perl script included in it.

This happens because Berkeley DB uses dynamic memory to allocate buffers which will subsequently
be written to the database file. Being dynamic, the memory could have been used for anything before
DB malloced it. As Berkeley DB doesn't clear the memory once it has been allocated, the unused
portions will contain random junk. In the case where a Perl script gets written to the database, the
random junk will correspond to an area of dynamic memory that happened to be used during the
compilation of the script.

Unless you don't like the possibility of there being part of your Perl scripts embedded in a database
file, this is nothing to worry about.

Although cannot do this directly, there is a module which can layer transparently over
to accomplish this feat.

Check out the MLDBM module, available on CPAN in the directory .

You will get this error message when one of the parameters in the call is wrong. Unfortunately
there are quite a few parameters to get wrong, so it can be difficult to figure out which one it is.

Here are a couple of possibilities:

1. Attempting to reopen a database without closing it.

2. Using the O_WRONLY flag.

You will encounter this particular error message when you have the pragma (or the
full strict pragma) in your script. Consider this script:

Running it produces the error in question:

To get around the error, place the word in either single or double quotes, like this:

Although it might seem like a real pain, it is really worth the effort of having a in all your

Perl version 5.8.6 documentation - DB_File

Page 25http://perldoc.perl.org

undef $X ;
untie %x ;

$X = tie %x, ’DB_File’, ’tst.fil’ , O_RDWR|O_CREAT
...

use warnings ;
use strict ;
use DB_File ;
my %x ;
tie %x, DB_File, "filename" ;

Bareword "DB_File" not allowed while "strict subs" in use

tie %x, "DB_File", "filename" ;

COMMON QUESTIONS
Why is there Perl source in my database?

How do I store complex data structures with DB_File?

What does "Invalid Argument" mean?

What does "Bareword 'DB_File' not allowed" mean?

DB_File
DB_File

modules/by-module/MLDBM

tie

strict ’subs’

DB_File

use strict

scripts.

Articles that are either about or make use of it.

1. , Tim Kientzle (tkientzle@ddj.com), Dr. Dobb's Journal, Issue
295, January 1999, pp 34-41

Moved to the Changes file.

Some older versions of Berkeley DB had problems with fixed length records using the RECNO file
format. This problem has been fixed since version 1.85 of Berkeley DB.

I am sure there are bugs in the code. If you do find any, or can suggest any enhancements, I would
welcome your comments.

comes with the standard Perl source distribution. Look in the directory . Given
the amount of time between releases of Perl the version that ships with Perl is quite likely to be out of
date, so the most recent version can always be found on CPAN (see for
details), in the directory .

This version of will work with either version 1.x, 2.x or 3.x of Berkeley DB, but is limited to the
functionality provided by version 1.

The official web site for Berkeley DB is . All versions of Berkeley DB are
available there.

Alternatively, Berkeley DB version 1 is available at your nearest CPAN archive in
.

If you are running IRIX, then get Berkeley DB version 1 from . It has the
patches necessary to compile properly on IRIX 5.3.

Copyright (c) 1995-2004 Paul Marquess. All rights reserved. This program is free software; you can
redistribute it and/or modify it under the same terms as Perl itself.

Although is covered by the Perl license, the library it makes use of, namely Berkeley DB, is
not. Berkeley DB has its own copyright and its own license. Please take the time to read it.

Here are are few words taken from the Berkeley DB FAQ (at) regarding the
license:

If you are in any doubt about the license situation, contact either the Berkeley DB authors or the
author of DB_File. See for details.

Perl version 5.8.6 documentation - DB_File

Page 26http://perldoc.perl.org

REFERENCES

HISTORY

BUGS

AVAILABILITY

COPYRIGHT

DB_File

DB_File

DB_File

DB_File

Full-Text Searching in Perl

ext/DB_File

"CPAN" in perlmodlib
modules/by-module/DB_File

http://www.sleepycat.com

src/misc/db.1.85.tar.gz

http://reality.sgi.com/ariel

http://www.sleepycat.com

AUTHOR

Do I have to license DB to use it in Perl scripts?

No. The Berkeley DB license requires that software that uses
Berkeley DB be freely redistributable. In the case of Perl, that
software is Perl, and not your scripts. Any Perl scripts that you
write are your property, including scripts that make use of
Berkeley DB. Neither the Perl license nor the Berkeley DB license
place any restriction on what you may do with them.

, , , , ,

The DB_File interface was written by Paul Marquess <pmqs@cpan.org>. Questions about the DB
system itself may be addressed to <db@sleepycat.com>.

Perl version 5.8.6 documentation - DB_File

Page 27http://perldoc.perl.org

SEE ALSO

AUTHOR

perl dbopen(3) hash(3) recno(3) btree(3) perldbmfilter

