
Encode::PerlIO -- a detailed document on Encode and PerlIO

It is very common to want to do encoding transformations when reading or writing files, network
connections, pipes etc. If Perl is configured to use the new 'perlio' IO system then provides a
"layer" (see) which can transform data as it is read or written.

Here is how the blind poet would modernise the encoding:

In addition, the new IO system can also be configured to read/write UTF-8 encoded characters (as
noted above, this is efficient):

Either of the above forms of "layer" specifications can be made the default for a lexical scope with the
pragma. See .

Once a handle is open, its layers can be altered using .

Without any such configuration, or if Perl itself is built using the system's own IO, then write
operations assume that the file handle accepts only and will if a character larger than 255
is written to the handle. When reading, each octet from the handle becomes a byte-in-a-character.
Note that this default is the same behaviour as bytes-only languages (including Perl before v5.6)
would have, and is sufficient to handle native 8-bit encodings e.g. iso-8859-1, EBCDIC etc. and any
legacy mechanisms for handling other encodings and binary data.

In other cases, it is the program's responsibility to transform characters into bytes using the API above
before doing writes, and to transform the bytes read from a handle into characters before doing
"character operations" (e.g. , , ...).

You can also use PerlIO to convert larger amounts of data you don't want to bring into memory. For
example, to convert between ISO-8859-1 (Latin 1) and UTF-8 (or UTF-EBCDIC in EBCDIC
machines):

More examples:

Perl version 5.8.6 documentation - Encode::PerlIO

Page 1http://perldoc.perl.org

NAME

Overview

Encode

use open ...

binmode

die

lc /\W+/

PerlIO

open

bytes

use Encode;
open(my $iliad,’<:encoding(iso-8859-7)’,’iliad.greek’);
open(my $utf8,’>:utf8’,’iliad.utf8’);
my @epic = <$iliad>;
print $utf8 @epic;
close($utf8);
close($illiad);

open(my $fh,’>:utf8’,’anything’);
print $fh "Any \x{0021} string \N{SMILEY FACE}\n";

open(F, "<:encoding(iso-8859-1)", "data.txt") or die $!;
open(G, ">:utf8", "data.utf") or die $!;
while (<F>) { print G }

Could also do "print G <F>" but that would pull
the whole file into memory just to write it out again.

open(my $f, "<:encoding(cp1252)")
open(my $g, ">:encoding(iso-8859-2)")
open(my $h, ">:encoding(latin9)") # iso-8859-15

See also for how to change the default encoding of the data in your script.

Here is a crude diagram of how filehandle, PerlIO, and Encode interact.

When PerlIO receives data from either direction, it fills a buffer (currently with 1024 bytes) and passes
the buffer to Encode. Encode tries to convert the valid part and passes it back to PerlIO, leaving
invalid parts (usually a partial character) in the buffer. PerlIO then appends more data to the buffer,
calls Encode again, and so on until the data stream ends.

To do so, PerlIO always calls (de|en)code methods with CHECK set to 1. This ensures that the
method stops at the right place when it encounters partial character. The following is what happens
when PerlIO and Encode tries to encode (from utf8) more than 1024 bytes and the buffer boundary
happens to be in the middle of a character.

Encode converts from the beginning to \x7E, leaving \xe3 in the buffer because it is invalid (partial
character).

Unfortunately, this scheme does not work well with escape-based encodings such as ISO-2022-JP.

Now let's see what happens when you try to decode from ISO-2022-JP and the buffer ends in the
middle of a character.

As you see, the next buffer begins with \x43. But \x43 is 'C' in ASCII, which is wrong in this case
because we are now in JISX 0208 area so it has to convert \x43\x46, not \x43. Unlike utf8 and EUC,
in escape-based encodings you can't tell if a given octet is a whole character or just part of it.

Fortunately PerlIO also supports line buffer if you tell PerlIO to use one instead of fixed buffer. Since
ISO-2022-JP is guaranteed to revert to ASCII at the end of the line, partial character will never
happen when line buffer is used.

To tell PerlIO to use line buffer, implement ->needs_lines method for your encoding object. See
for details.

Thanks to these efforts most encodings that come with Encode support PerlIO but that still leaves
following encodings.

Perl version 5.8.6 documentation - Encode::PerlIO

Page 2http://perldoc.perl.org

encoding

Encode::Encoding

How does it work?

Line Buffering

filehandle <-> PerlIO PerlIO <-> scalar (read/printed)
\ /
Encode

A B C ~ \x{3000}
41 42 43 7E e3 80 80
<- buffer --------------->
<< encoded >>>>>>>>>>

<- next buffer ------

JIS208-ESC \x{5f3e}
A B C ~ \e $ B |DAN |
41 42 43 7E 1b 24 41 43 46
<- buffer --------------------------->
<< encoded >>>>>>>>>>>>>>>>>>>>>>>

iso-2022-kr
MIME-B
MIME-Header
MIME-Q

Fortunately iso-2022-kr is hardly used (according to Jungshik) and MIME-* are very unlikely to be fed
to PerlIO because they are for mail headers. See for details.

As of this writing, any encoding whose class belongs to Encode::XS and Encode::Unicode works. The
Encode module has a method which you can use before appling PerlIO encoding to the
filehandle. Here is an example:

, , , , , ,
, , the Perl Unicode Mailing List <perl-unicode@perl.org>

Perl version 5.8.6 documentation - Encode::PerlIO

Page 3http://perldoc.perl.org

my $use_perlio = perlio_ok($enc);
my $layer = $use_perlio ? "<:raw" : "<:encoding($enc)";
open my $fh, $layer, $file or die "$file : $!";
while(<$fh>){
$_ = decode($enc, $_) unless $use_perlio;
....

}

Encode::MIME::Header

Encode::Encoding Encode::Supported Encode::PerlIO encoding perlebcdic "open" in perlfunc
perlunicode utf8

How can I tell whether my encoding fully supports PerlIO ?

perlio_ok

SEE ALSO

