
ExtUtils::MakeMaker::FAQ - Frequently Asked Questions About MakeMaker

FAQs, tricks and tips for .

Why not just use <insert other build config tool here>?

Why did MakeMaker reinvent the build configuration wheel? Why not just use autoconf or
automake or ppm or Ant or ...

There are many reasons, but the major one is cross-platform compatibility.

Perl is one of the most ported pieces of software ever. It works on operating systems I've
never even heard of (see perlport for details). It needs a build tool that can work on all those
platforms and with any wacky C compilers they might have.

No such build tool existed at the time and I only know of one now (Module::Build).

What's Module::Build and how does it relate to MakeMaker?

Module::Build is a project by Ken Williams to supplant MakeMaker. Its primary advantages
are:

* pure perl. no make, no shell commands

* easier to customize

* cleaner internals

* less cruft

Module::Build is the official heir apparent to MakeMaker and we encourage people to work on
M::B rather than spending time improving MakeMaker.

How do I keep my $VERSION up to date without resetting it manually?

Often you want to manually set the $VERSION in the main module distribution because this is
the version that everybody sees on CPAN and maybe you want to customize it a bit. But for all
the other modules in your dist, $VERSION is really just bookkeeping and all that's important is
it goes up every time the module is changed. Doing this by hand is a pain and you often
forget.

Simplest way to do it automatically is to use your version control system's revision number
(you are using version control, right?).

In CVS and RCS you use $Revision$ writing it like so:

Every time the file is checked in the $Revision$ will be updated, updating your $VERSION.

In CVS version 1.9 is followed by 1.10. Since CPAN compares version numbers numerically
we use a sprintf() to convert 1.9 to 1.009 and 1.10 to 1.010 which compare properly.

If branches are involved (ie. $Revision: 1.5.3.4) its a little more complicated.

What's this thing and how did it get in my ?!

is a module meta-data file pioneered by Module::Build and automatically generated
as part of the 'distdir' target (and thus 'dist'). See .

Perl version 5.8.6 documentation - ExtUtils::MakeMaker::FAQ

Page 1http://perldoc.perl.org

NAME

DESCRIPTION
ExtUtils::MakeMaker

Philosophy and History

Module Writing

$VERSION = sprintf "%d.%03d", q$Revision: 1.9 $ =~ /(\d+)/g;

must be all on one line or MakeMaker will get confused.
$VERSION = do { my @r = (q$Revision: 1.9 $ =~ /\d+/g); sprintf

"%d."."%03d" x $#r, @r };

META.yml MANIFEST

META.yml
"Module Meta-Data" in ExtUtils::MakeMaker

To shut off its generation, pass the flag to .

How to I prevent "object version X.XX does not match bootstrap parameter Y.YY" errors?

XS code is very sensitive to the module version number and will complain if the version
number in your Perl module doesn't match. If you change your module's version # without
reruning Makefile.PL the old version number will remain in the Makefile causing the XS code
to be built with the wrong number.

To avoid this, you can force the Makefile to be rebuilt whenever you change the module
containing the version number by adding this to your WriteMakefile() arguments.

How do I make two or more XS files coexist in the same directory?

Sometimes you need to have two and more XS files in the same package. One way to go is to
put them into separate directories, but sometimes this is not the most suitable solution. The
following technique allows you to put two (and more) XS files in the same directory.

Let's assume that we have a package , which includes and
modules each having a separate XS file. First we use the following :

Notice the attribute. MakeMaker generates the following variables in :

Therefore we can use the variable to tell MakeMaker to use these objects into the
shared library.

That's pretty much it. Now write and , and , where
bootstraps the shared library and simply loading .

The only issue left is to how to bootstrap . This is done from :

If you have more than two files, this is the place where you should boot extra XS files from.

The following four files sum up all the details discussed so far.

Perl version 5.8.6 documentation - ExtUtils::MakeMaker::FAQ

Page 2http://perldoc.perl.org

NO_META WriteMakefile()

Cool::Foo Cool::Foo
Cool::Bar

OBJECT

O_FILES

XS

depend => { ’$(FIRST_MAKEFILE)’ => ’$(VERSION_FROM)’ }

use ExtUtils::MakeMaker;

WriteMakefile(
NAME => ’Cool::Foo’,
VERSION_FROM => ’Foo.pm’,
OBJECT => q/$(O_FILES)/,
... other attrs ...

);

Handy lists of source code files:
XS_FILES= Bar.xs \
Foo.xs
C_FILES = Bar.c \
Foo.c
O_FILES = Bar.o \
Foo.o

MODULE = Cool::Foo PACKAGE = Cool::Foo

BOOT:
boot the second XS file
boot_Cool__Bar(aTHX_ cv);

Foo.pm:

package Cool::Foo;

Makefile.PL

Makefile

Foo.pm Foo.xs Bar.pm Bar.xs Foo.pm
Bar.pm Foo.pm

Bar.xs Foo.xs

And of course a very basic test:

Perl version 5.8.6 documentation - ExtUtils::MakeMaker::FAQ

Page 3http://perldoc.perl.org

require DynaLoader;

our @ISA = qw(DynaLoader);
our $VERSION = ’0.01’;
bootstrap Cool::Foo $VERSION;

1;

Bar.pm:

package Cool::Bar;

use Cool::Foo; # bootstraps Bar.xs

1;

Foo.xs:

#include "EXTERN.h"
#include "perl.h"
#include "XSUB.h"

MODULE = Cool::Foo PACKAGE = Cool::Foo

BOOT:
boot the second XS file
boot_Cool__Bar(aTHX_ cv);

MODULE = Cool::Foo PACKAGE = Cool::Foo PREFIX = cool_foo_

void
cool_foo_perl_rules()

CODE:
fprintf(stderr, "Cool::Foo says: Perl Rules\n");

Bar.xs:

#include "EXTERN.h"
#include "perl.h"
#include "XSUB.h"

MODULE = Cool::Bar PACKAGE = Cool::Bar PREFIX = cool_bar_

void
cool_bar_perl_rules()

CODE:
fprintf(stderr, "Cool::Bar says: Perl Rules\n");

test.pl:

use Test;
BEGIN { plan tests => 1 };
use Cool::Foo;

This tip has been brought to you by Nick Ing-Simmons and Stas Bekman.

If you have a question you'd like to see added to the FAQ (whether or not you have the answer)
please send it to makemaker@perl.org.

The denizens of makemaker@perl.org.

Perl version 5.8.6 documentation - ExtUtils::MakeMaker::FAQ

Page 4http://perldoc.perl.org

use Cool::Bar;
Cool::Foo::perl_rules();
Cool::Bar::perl_rules();
ok 1;

PATCHING

AUTHOR

SEE ALSO
ExtUtils::MakeMaker

