
Math::BigFloat - Arbitrary size floating point math package

Perl version 5.8.6 documentation - Math::BigFloat

Page 1http://perldoc.perl.org

NAME

SYNOPSIS
use Math::BigFloat;

Number creation
$x = Math::BigFloat->new($str); # defaults to 0
$nan = Math::BigFloat->bnan(); # create a NotANumber
$zero = Math::BigFloat->bzero(); # create a +0
$inf = Math::BigFloat->binf(); # create a +inf
$inf = Math::BigFloat->binf(’-’); # create a -inf
$one = Math::BigFloat->bone(); # create a +1
$one = Math::BigFloat->bone(’-’); # create a -1

Testing
$x->is_zero(); # true if arg is +0
$x->is_nan(); # true if arg is NaN
$x->is_one(); # true if arg is +1
$x->is_one(’-’); # true if arg is -1
$x->is_odd(); # true if odd, false for even
$x->is_even(); # true if even, false for odd
$x->is_pos(); # true if >= 0
$x->is_neg(); # true if < 0
$x->is_inf(sign); # true if +inf, or -inf (default is ’+’)

$x->bcmp($y); # compare numbers (undef,<0,=0,>0)
$x->bacmp($y); # compare absolutely (undef,<0,=0,>0)
$x->sign(); # return the sign, either +,- or NaN
$x->digit($n); # return the nth digit, counting from right
$x->digit(-$n); # return the nth digit, counting from left

The following all modify their first argument. If you want to preserve
$x, use $z = $x->copy()->bXXX($y); See under L<CAVEATS> for why this is
neccessary when mixing $a = $b assigments with non-overloaded math.

set
$x->bzero(); # set $i to 0
$x->bnan(); # set $i to NaN
$x->bone(); # set $x to +1
$x->bone(’-’); # set $x to -1
$x->binf(); # set $x to inf
$x->binf(’-’); # set $x to -inf

$x->bneg(); # negation
$x->babs(); # absolute value
$x->bnorm(); # normalize (no-op)
$x->bnot(); # two’s complement (bit wise not)
$x->binc(); # increment x by 1
$x->bdec(); # decrement x by 1

$x->badd($y); # addition (add $y to $x)
$x->bsub($y); # subtraction (subtract $y from $x)

Perl version 5.8.6 documentation - Math::BigFloat

Page 2http://perldoc.perl.org

$x->bmul($y); # multiplication (multiply $x by $y)
$x->bdiv($y); # divide, set $x to quotient
return (quo,rem) or quo if scalar

$x->bmod($y); # modulus ($x % $y)
$x->bpow($y); # power of arguments ($x ** $y)
$x->blsft($y); # left shift
$x->brsft($y); # right shift
return (quo,rem) or quo if scalar

$x->blog(); # logarithm of $x to base e (Euler’s number)
$x->blog($base); # logarithm of $x to base $base (f.i. 2)

$x->band($y); # bit-wise and
$x->bior($y); # bit-wise inclusive or
$x->bxor($y); # bit-wise exclusive or
$x->bnot(); # bit-wise not (two’s complement)

$x->bsqrt(); # calculate square-root
$x->broot($y); # $y’th root of $x (e.g. $y == 3 => cubic root)
$x->bfac(); # factorial of $x (1*2*3*4*..$x)

$x->bround($N); # accuracy: preserve $N digits
$x->bfround($N); # precision: round to the $Nth digit

$x->bfloor(); # return integer less or equal than $x
$x->bceil(); # return integer greater or equal than $x

The following do not modify their arguments:

bgcd(@values); # greatest common divisor
blcm(@values); # lowest common multiplicator

$x->bstr(); # return string
$x->bsstr(); # return string in scientific notation

$x->as_int(); # return $x as BigInt
$x->exponent(); # return exponent as BigInt
$x->mantissa(); # return mantissa as BigInt
$x->parts(); # return (mantissa,exponent) as BigInt

$x->length(); # number of digits (w/o sign and ’.’)
($l,$f) = $x->length(); # number of digits, and length of fraction

$x->precision(); # return P of $x (or global, if P of $x undef)
$x->precision($n); # set P of $x to $n
$x->accuracy(); # return A of $x (or global, if A of $x undef)
$x->accuracy($n); # set A $x to $n

these get/set the appropriate global value for all BigFloat objects
Math::BigFloat->precision(); # Precision
Math::BigFloat->accuracy(); # Accuracy

All operators (inlcuding basic math operations) are overloaded if you declare your big floating point
numbers as

Operations with overloaded operators preserve the arguments, which is exactly what you expect.

Input to these routines are either BigFloat objects, or strings of the following four forms:

all with optional leading and trailing zeros and/or spaces. Additonally, numbers are allowed to have an
underscore between any two digits.

Empty strings as well as other illegal numbers results in 'NaN'.

bnorm() on a BigFloat object is now effectively a no-op, since the numbers are always stored in
normalized form. On a string, it creates a BigFloat object.

Output values are BigFloat objects (normalized), except for bstr() and bsstr().

The string output will always have leading and trailing zeros stripped and drop a plus sign.
will give you always the form with a decimal point, while (s for scientific) gives you the
scientific notation.

Some routines (, , , ,) return true or false,
while others (,) return either undef, <0, 0 or >0 and are suited for sort.

Actual math is done by using the class defined with Class;> (which defaults to BigInts) to
represent the mantissa and exponent.

The sign is stored separately. The string 'NaN' is used to represent the result when input
arguments are not numbers, as well as the result of dividing by zero.

and return the said parts of the BigFloat as BigInts such that:

Perl version 5.8.6 documentation - Math::BigFloat

Page 3http://perldoc.perl.org

Math::BigFloat->round_mode(); # rounding mode

$i = new Math::BigFloat ’12_3.456_789_123_456_789E-2’;

Input bstr() bsstr()
’-0’ ’0’ ’0E1’

’ -123 123 123’ ’-123123123’ ’-123123123E0’
’00.0123’ ’0.0123’ ’123E-4’
’123.45E-2’ ’1.2345’ ’12345E-4’
’10E+3’ ’10000’ ’1E4’

$m = $x->mantissa();
$e = $x->exponent();
$y = $m * (10 ** $e);
print "ok\n" if $x == $y;

DESCRIPTION

Canonical notation

Output

mantissa(), exponent() and parts()

/^[+-]\d+$/

/^[+-]\d+\.\d*$/

/^[+-]\d+E[+-]?\d+$/

/^[+-]\d*\.\d+E[+-]?\d+$/

bstr()
bsstr()

is_odd() is_even() is_zero() is_one() is_nan()
bcmp() bacmp()

with =

/^[+-]$/

mantissa() exponent()

is just a shortcut giving you both of them.

A zero is represented and returned as , (after Knuth).

Currently the mantissa is reduced as much as possible, favouring higher exponents over lower ones
(e.g. returning 1e7 instead of 10e6 or 10000000e0). This might change in the future, so do not
depend on it.

See also: .

Math::BigFloat supports both precision and accuracy. For a full documentation, examples and tips on
these topics please see the large section in .

Since things like sqrt(2) or 1/3 must presented with a limited precision lest a operation consumes all
resources, each operation produces no more than the requested number of digits.

Please refer to BigInt's documentation for the precedence rules of which accuracy/precision setting
will be used.

If there is no gloabl precision set, the operation inquestion was not called with a requested
precision or accuracy, the input $x has no accuracy or precision set, then a fallback parameter
will be used. For historical reasons, it is called and can be accessed via:

The default value is 40 digits.

In case the result of one operation has more precision than specified, it is rounded. The rounding
mode taken is either the default mode, or the one supplied to the operation after the :

ffround (+$scale)

Rounds to the $scale'th place left from the '.', counting from the dot. The first digit is numbered 1.

ffround (-$scale)

Rounds to the $scale'th place right from the '.', counting from the dot.

ffround (0)

Rounds to an integer.

fround (+$scale)

Preserves accuracy to $scale digits from the left (aka significant digits) and pads the rest with
zeros. If the number is between 1 and -1, the significant digits count from the first non-zero after
the '.'

fround (-$scale) and fround (0)

These are effectively no-ops.

Perl version 5.8.6 documentation - Math::BigFloat

Page 4http://perldoc.perl.org

$d = Math::BigFloat->div_scale(); # query
Math::BigFloat->div_scale($n); # set to $n digits

$x = Math::BigFloat->new(2);
Math::BigFloat->precision(5); # 5 digits max
$y = $x->copy()->bdiv(3); # will give 0.66666
$y = $x->copy()->bdiv(3,6); # will give 0.666666
$y = $x->copy()->bdiv(3,6,’odd’); # will give 0.666667
Math::BigFloat->round_mode(’zero’);
$y = $x->copy()->bdiv(3,6); # will give 0.666666

($m,$e) = $x->parts();

0E1 0E0

div_scale

not

and
and

Accuracy vs. Precision

Rounding

Rounding

Math::BigInt

scale

All rounding functions take as a second parameter a rounding mode from one of the following: 'even',
'odd', '+inf', '-inf', 'zero' or 'trunc'.

The default rounding mode is 'even'. By using
you can get and set the default mode for subsequent rounding. The usage of

is no longer supported. The second parameter to the round
functions then overrides the default temporarily.

The function returns a BigInt from a Math::BigFloat. It uses 'trunc' as rounding mode to
make it equivalent to:

You can override this by passing the desired rounding mode as parameter to :

After all the floating point constants in the given scope are
converted to . This conversion happens at compile time.

In particular

prints the value of . Note that without conversion of constants the expression 2E-100 will be
calculated as normal floating point number.

Please note that ':constant' does not affect integer constants, nor binary nor hexadecimal constants.
Use or to get this to work.

Math with the numbers is done (by default) by a module called Math::BigInt::Calc. This is equivalent to
saying:

You can change this by using:

The following would first try to find Math::BigInt::Foo, then Math::BigInt::Bar, and when this also fails,
revert to Math::BigInt::Calc:

Calc.pm uses as internal format an array of elements of some decimal base (usually 1e7, but this
might be differen for some systems) with the least significant digit first, while BitVect.pm uses a bit
vector of base 2, most significant bit first. Other modules might use even different means of
representing the numbers. See the respective module documentation for further details.

Perl version 5.8.6 documentation - Math::BigFloat

Page 5http://perldoc.perl.org

Math::BigFloat->round_mode($round_mode);

$Math::BigFloat::$round_mode

as_number()

as_number()

use Math::BigFloat ’:constant’
Math::BigFloat

2E-100

$x = 2.5;
$y = int($x) + 2;

$x = Math::BigFloat->new(2.5);
$y = $x->as_number(’odd’); # $y = 3

not ready yet

perl -MMath::BigFloat=:constant -e ’print 2E-100,"\n"’

use Math::BigFloat lib => ’Calc’;

use Math::BigFloat lib => ’BitVect’;

use Math::BigFloat lib => ’Foo,Math::BigInt::Bar’;

EXAMPLES

Autocreating constants

bignum Math::BigInt

Math library

Please note that Math::BigFloat does use the denoted library itself, but it merely passes the lib
argument to Math::BigInt. So, instead of the need to do:

you can roll it all into one line:

It is also possible to just require Math::BigFloat:

This will load the neccessary things (like BigInt) when they are needed, and automatically.

Use the lib, Luke! And see for more details than you ever wanted to know
about loading a different library.

It is possible to use with Math::BigFloat:

There is no need to "use Math::BigInt" or "use Math::BigInt::Lite", but you can combine these if you
want. For instance, you may want to use Math::BigInt objects in your main script, too.

Of course, you can combine this with the parameter.

There is no need for a "use Math::BigInt;" statement, even if you want to use Math::BigInt's, since
Math::BigFloat will needs Math::BigInt and thus always loads it. But if you add it, add it :

Notice that the module with the last will "win" and thus it's lib will be used if the lib is available:

That would try to load Foo, Bar, Baz and Calc (in that order). Or in other words, Math::BigFloat will try
to retain previously loaded libs when you don't specify it onem but if you specify one, it will try to load
them.

Actually, the lib loading order would be "Bar,Baz,Calc", and then "Foo,Bar,Baz,Calc", but
independend of which lib exists, the result is the same as trying the latter load alone, except for the
fact that one of Bar or Baz might be loaded needlessly in an intermidiate step (and thus hang around

Perl version 5.8.6 documentation - Math::BigFloat

Page 6http://perldoc.perl.org

not

before

use Math::BigInt lib => ’GMP’;
use Math::BigFloat;

use Math::BigFloat lib => ’GMP’;

require Math::BigFloat;

1
use Math::BigFloat with => ’Math::BigInt::Lite’;

2
use Math::BigInt;
use Math::BigFloat with => ’Math::BigInt::Lite’;

3
use Math::BigFloat with => ’Math::BigInt::Lite’, lib => ’GMP,Pari’;

4
use Math::BigInt;
use Math::BigFloat with => ’Math::BigInt::Lite’, lib => ’GMP,Pari’;

5
use Math::BigInt lib => ’Bar,Baz’;
use Math::BigFloat with => ’Math::BigInt::Lite’, lib => ’Foo’;

Using Math::BigInt::Lite

Math::BigInt::Lite

Using Math::BigInt::Lite

lib

lib

and waste memory). If neither Bar nor Baz exist (or don't work/compile), they will still be tried to be
loaded, but this is not as time/memory consuming as actually loading one of them. Still, this type of
usage is not recommended due to these issues.

The old way (loading the lib only in BigInt) still works though:

You can even load Math::BigInt afterwards:

But this has the same problems like #5, it will first load Calc (Math::BigFloat needs Math::BigInt and
thus loads it) and then later Bar or Baz, depending on which of them works and is usable/loadable.
Since this loads Calc unnecc., it is not recommended.

Since it also possible to just require Math::BigFloat, this poses the question about what libary this will
use:

It will use Calc. Please note that the call to import() is still done, but only when you use for the first
time some Math::BigFloat math (it is triggered via any constructor, so the first time you create a
Math::BigFloat, the load will happen in the background). This means:

would be the same as:

But don't try to be clever to insert some operations in between:

While this works, it loads Calc needlessly. But maybe you just wanted that?

for daily usage.

Please see the file BUGS in the CPAN distribution Math::BigInt for known bugs.

stringify, bstr()

Both stringify and bstr() now drop the leading '+'. The old code would return '+1.23', the new returns
'1.23'. See the documentation in for reasoning and details.

bdiv

Perl version 5.8.6 documentation - Math::BigFloat

Page 7http://perldoc.perl.org

6
use Math::BigInt lib => ’Bar,Baz’;
use Math::BigFloat;

7
use Math::BigFloat;
use Math::BigInt lib => ’Bar,Baz’;

require Math::BigFloat;
my $x = Math::BigFloat->new(123); $x += 123;

require Math::BigFloat;
Math::BigFloat->import (lib => ’Foo,Bar’);

use Math::BigFloat lib => ’Foo, Bar’;

require Math::BigFloat;
my $x = Math::BigFloat->bone() + 4; # load BigInt and Calc
Math::BigFloat->import(lib => ’Pari’); # load Pari, too
$x = Math::BigFloat->bone()+4; # now use Pari

Examples #3 is highly recommended

BUGS

CAVEATS

Math::BigInt

The following will probably not do what you expect:

It prints both quotient and reminder since print works in list context. Also, bdiv() will modify $c, so be
carefull. You probably want to use

instead.

Modifying and =

Beware of:

It will not do what you think, e.g. making a copy of $x. Instead it just makes a second reference to
the object and stores it in $y. Thus anything that modifies $x will modify $y (except
overloaded math operators), and vice versa. See for details and how to avoid that.

bpow

now modifies the first argument, unlike the old code which left it alone and only returned
the result. This is to be consistent with etc. The first will modify $x, the second one won't:

, and as well as , and
.

The pragmas , and might also be of interest because they solve the
autoupgrading/downgrading issue, at least partly.

The package at contains
more documentation including a full version history, testcases, empty subclass files and benchmarks.

This program is free software; you may redistribute it and/or modify it under the same terms as Perl
itself.

Mark Biggar, overloaded interface by Ilya Zakharevich. Completely rewritten by Tels
http://bloodgate.com in 2001, 2002, and still at it in 2003.

Perl version 5.8.6 documentation - Math::BigFloat

Page 8http://perldoc.perl.org

print $c->bdiv(123.456),"\n";

print $c / 123.456,"\n";
print scalar $c->bdiv(123.456),"\n"; # or if you want to modify $c

$x = Math::BigFloat->new(5);
$y = $x;

print bpow($x,$i),"\n"; # modify $x
print $x->bpow($i),"\n"; # ditto
print $x ** $i,"\n"; # leave $x alone

same
Math::BigInt

Math::BigInt Math::BigRat Math::Big Math::BigInt::BitVect Math::BigInt::Pari
Math::BigInt::GMP

bignum bigint bigrat

http://search.cpan.org/search?mode=module&query=Math%3A%3ABigInt

bpow()
badd()

SEE ALSO

LICENSE

AUTHORS

