
Net::FTP - FTP Client class

is a class implementing a simple FTP client in Perl as described in RFC959. It provides
wrappers for a subset of the RFC959 commands.

FTP stands for File Transfer Protocol. It is a way of transferring files between networked machines.
The protocol defines a client (whose commands are provided by this module) and a server (not
implemented in this module). Communication is always initiated by the client, and the server responds
with a message and a status code (and sometimes with data).

The FTP protocol allows files to be sent to or fetched from the server. Each transfer involves a
(on the client) and a (on the server). In this module, the same file name will be used

for both local and remote if only one is specified. This means that transferring remote file
will try to put that file in locally, unless you specify a local file

name.

The protocol also defines several standard which the file can undergo during transfer.
These are ASCII, EBCDIC, binary, and byte. ASCII is the default type, and indicates that the sender
of files will translate the ends of lines to a standard representation which the receiver will then
translate back into their local representation. EBCDIC indicates the file being transferred is in EBCDIC
format. Binary (also known as image) format sends the data as a contiguous bit stream. Byte format
transfers the data as bytes, the values of which remain the same regardless of differences in byte size
between the two machines (in theory - in practice you should only use this if you really know what
you're doing).

new ([HOST] [, OPTIONS])

This is the constructor for a new Net::FTP object. is the name of the remote host to
which an FTP connection is required.

is optional. If is not given then it may instead be passed as the option
described below.

are passed in a hash like fashion, using key and value pairs. Possible options are:

Perl version 5.8.6 documentation - Net::FTP

Page 1http://perldoc.perl.org

NAME

SYNOPSIS

DESCRIPTION

OVERVIEW

CONSTRUCTOR

use Net::FTP;

$ftp = Net::FTP->new("some.host.name", Debug => 0)
or die "Cannot connect to some.host.name: $@";

$ftp->login("anonymous",’-anonymous@’)
or die "Cannot login ", $ftp->message;

$ftp->cwd("/pub")
or die "Cannot change working directory ", $ftp->message;

$ftp->get("that.file")
or die "get failed ", $ftp->message;

$ftp->quit;

Net::FTP

/path/to/file /path/to/file

HOST

HOST HOST Host

OPTIONS

local
file remote file

translations

- FTP host to connect to. It may be a single scalar, as defined for the option
in , or a reference to an array with hosts to try in turn. The method will
return the value which was used to connect to the host.

- The name of a machine which acts as an FTP firewall. This can be overridden by
an environment variable . If specified, and the given host cannot be directly
connected to, then the connection is made to the firewall machine and the string
is appended to the login identifier. This kind of setup is also refered to as an ftp proxy.

- The type of firewall running on the machine indicated by . This can be
overridden by an environment variable . For a list of permissible types,
see the description of ftp_firewall_type in .

- This is the block size that Net::FTP will use when doing transfers. (defaults to
10240)

- The port number to connect to on the remote machine for the FTP connection

- Set a timeout value (defaults to 120)

- debug level (see the debug method in)

- If set to a non-zero value then all data transfers will be done using passive mode.
This is not usually required except for some servers, and some firewall configurations.
This can also be set by the environment variable .

- If given a reference to a file handle (e.g.,), print hash marks (#) on that
filehandle every 1024 bytes. This simply invokes the method for you, so that hash
marks are displayed for all transfers. You can, of course, call explicitly whenever
you'd like.

- Local address to use for all socket connections, this argument will be passed to

If the constructor fails undef will be returned and an error message will be in $@

Unless otherwise stated all methods return either a or value, with meaning that the
operation was a success. When a method states that it returns a value, failure will be returned as

or an empty list.

login ([LOGIN [,PASSWORD [, ACCOUNT]]])

Log into the remote FTP server with the given login information. If no arguments are given
then the uses the package to lookup the login information for the
connected host. If no information is found then a login of is used. If no password
is given and the login is then will be used for password.

If the connection is via a firewall then the method will be called with no
arguments.

authorize ([AUTH [, RESP]])

This is a protocol used by some firewall ftp proxies. It is used to authorise the user to send
data out. If both arguments are not specified then uses to do a
lookup.

site (ARGS)

Send a SITE command to the remote server and wait for a response.

Returns most significant digit of the response code.

ascii

Transfer file in ASCII. CRLF translation will be done if required

binary

Perl version 5.8.6 documentation - Net::FTP

Page 2http://perldoc.perl.org

Host

Firewall

FirewallType Firewall

BlockSize

Port

Timeout

Debug

Passive

Hash

LocalAddr

PeerAddr

FTP_FIREWALL
@hostname

FTP_FIREWALL_TYPE

FTP_PASSIVE

*STDERR
hash()

hash()

Net::FTP Net::Netrc

authorize

authorize Net::Netrc

IO::Socket::INET host

Net::Config

Net::Cmd

dumb

IO::Socket::INET

true false true

undef

anonymous
anonymous anonymous@

METHODS

Transfer file in binary mode. No transformation will be done.

: If both server and client machines use the same line ending for text files, then it will be
faster to transfer all files in binary mode.

rename (OLDNAME, NEWNAME)

Rename a file on the remote FTP server from to . This is done by sending
the RNFR and RNTO commands.

delete (FILENAME)

Send a request to the server to delete .

cwd ([DIR])

Attempt to change directory to the directory given in . If is , the FTP
command is used to attempt to move up one directory. If no directory is given then an attempt
is made to change the directory to the root directory.

cdup ()

Change directory to the parent of the current directory.

pwd ()

Returns the full pathname of the current directory.

restart (WHERE)

Set the byte offset at which to begin the next data transfer. Net::FTP simply records this value
and uses it when during the next data transfer. For this reason this method will not return an
error, but setting it may cause a subsequent data transfer to fail.

rmdir (DIR [, RECURSE])

Remove the directory with the name . If is then will attempt to delete
everything inside the directory.

mkdir (DIR [, RECURSE])

Create a new directory with the name . If is then will attempt to
create all the directories in the given path.

Returns the full pathname to the new directory.

alloc (SIZE [, RECORD_SIZE])

The alloc command allows you to give the ftp server a hint about the size of the file about to
be transfered using the ALLO ftp command. Some storage systems use this to make
intelligent decisions about how to store the file. The argument represents the size of the
file in bytes. The argument indicates a mazimum record or page size for files
sent with a record or page structure.

The size of the file will be determined, and sent to the server automatically for normal files so
that this method need only be called if you are transfering data from a socket, named pipe, or
other stream not associated with a normal file.

ls ([DIR])

Get a directory listing of , or the current directory.

In an array context, returns a list of lines returned from the server. In a scalar context, returns
a reference to a list.

dir ([DIR])

Get a directory listing of , or the current directory in long format.

In an array context, returns a list of lines returned from the server. In a scalar context, returns

Perl version 5.8.6 documentation - Net::FTP

Page 3http://perldoc.perl.org

Hint

OLDNAME NEWNAME

FILENAME

$dir $dir ".." CDUP

DIR RECURSE rmdir

DIR RECURSE mkdir

SIZE
RECORD_SIZE

DIR

DIR

true

true

a reference to a list.

get (REMOTE_FILE [, LOCAL_FILE [, WHERE]])

Get from the server and store locally. may be a filename or a
filehandle. If not specified, the file will be stored in the current directory with the same
leafname as the remote file.

If is given then the first bytes of the file will not be transfered, and the remaining
bytes will be appended to the local file if it already exists.

Returns , or the generated local file name if is not given. If an error
was encountered undef is returned.

put (LOCAL_FILE [, REMOTE_FILE])

Put a file on the remote server. may be a name or a filehandle. If
is a filehandle then must be specified. If is not specified then
the file will be stored in the current directory with the same leafname as .

Returns , or the generated remote filename if is not given.

: If for some reason the transfer does not complete and an error is returned then the
contents that had been transfered will not be remove automatically.

put_unique (LOCAL_FILE [, REMOTE_FILE])

Same as put but uses the command.

Returns the name of the file on the server.

append (LOCAL_FILE [, REMOTE_FILE])

Same as put but appends to the file on the remote server.

Returns , or the generated remote filename if is not given.

unique_name ()

Returns the name of the last file stored on the server using the command.

mdtm (FILE)

Returns the of the given file

size (FILE)

Returns the size in bytes for the given file as stored on the remote server.

: The size reported is the size of the stored file on the remote server. If the file is
subsequently transfered from the server in ASCII mode and the remote server and local
machine have different ideas about "End Of Line" then the size of file on the local machine
after transfer may be different.

supported (CMD)

Returns TRUE if the remote server supports the given command.

hash ([FILEHANDLE_GLOB_REF],[BYTES_PER_HASH_MARK])

Called without parameters, or with the first argument false, hash marks are suppressed. If the
first argument is true but not a reference to a file handle glob, then *STDERR is used. The
second argument is the number of bytes per hash mark printed, and defaults to 1024. In all
cases the return value is a reference to an array of two: the filehandle glob reference and the
bytes per hash mark.

The following methods can return different results depending on how they are called. If the user
explicitly calls either of the or methods then these methods will return a or
value. If the user does not call either of these methods then the result will be a reference to a

based object.

Perl version 5.8.6 documentation - Net::FTP

Page 4http://perldoc.perl.org

REMOTE_FILE LOCAL_FILE

WHERE WHERE

LOCAL_FILE LOCAL_FILE

LOCAL_FILE LOCAL_FILE
REMOTE_FILE REMOTE_FILE

LOCAL_FILE

REMOTE_FILE REMOTE_FILE

STOU

REMOTE_FILE REMOTE_FILE

STOU

pasv port

Net::FTP::dataconn

NOTE

NOTE

modification time

true false

nlst ([DIR])

Send an command to the server, with an optional parameter.

list ([DIR])

Same as but using the command

retr (FILE)

Begin the retrieval of a file called from the remote server.

stor (FILE)

Tell the server that you wish to store a file. is the name of the new file that should be
created.

stou (FILE)

Same as but using the command. The name of the unique file which was created
on the server will be available via the method after the data connection has
been closed.

appe (FILE)

Tell the server that we want to append some data to the end of a file called . If this file
does not exist then create it.

If for some reason you want to have complete control over the data connection, this includes
generating it and calling the method when required, then the user can use these methods
to do so.

However calling these methods only affects the use of the methods above that can return a data
connection. They have no effect on methods , , and those that do not require
data connections.

port ([PORT])

Send a command to the server. If is specified then it is sent to the server. If not,
then a listen socket is created and the correct information sent to the server.

pasv ()

Tell the server to go into passive mode. Returns the text that represents the port on which the
server is listening, this text is in a suitable form to sent to another ftp server using the
method.

The following methods can be used to transfer files between two remote servers, providing that these
two servers can connect directly to each other.

pasv_xfer (SRC_FILE, DEST_SERVER [, DEST_FILE])

This method will do a file transfer between two remote ftp servers. If is omitted
then the leaf name of will be used.

pasv_xfer_unique (SRC_FILE, DEST_SERVER [, DEST_FILE])

Like but the file is stored on the remote server using the STOU command.

pasv_wait (NON_PASV_SERVER)

This method can be used to wait for a transfer to complete between a passive server and a
non-passive server. The method should be called on the passive server with the
object for the non-passive server passed as an argument.

abort ()

Abort the current data transfer.

Perl version 5.8.6 documentation - Net::FTP

Page 5http://perldoc.perl.org

NLST

nlst LIST

FILE

FILE

stor STOU
unique_name

FILE

response

get put put_unique

PORT PORT

port

DEST_FILE
SRC_FILE

pasv_xfer

Net::FTP

quit ()

Send the QUIT command to the remote FTP server and close the socket connection.

inherits from so methods defined in may be used to send
commands to the remote FTP server.

quot (CMD [,ARGS])

Send a command, that Net::FTP does not directly support, to the remote server and wait for a
response.

Returns most significant digit of the response code.

This call should only be used on commands that do not require data connections.
Misuse of this method can hang the connection.

Some of the methods defined in return an object which will be derived from this class.The
dataconn class itself is derived from the class, so any normal IO operations can
be performed. However the following methods are defined in the dataconn class and IO should be
performed using these.

read (BUFFER, SIZE [, TIMEOUT])

Read bytes of data from the server and place it into , also performing any
<CRLF> translation necessary. is optional, if not given, the timeout value from the
command connection will be used.

Returns the number of bytes read before any <CRLF> translation.

write (BUFFER, SIZE [, TIMEOUT])

Write bytes of data from to the server, also performing any <CRLF> translation
necessary. is optional, if not given, the timeout value from the command connection
will be used.

Returns the number of bytes written before any <CRLF> translation.

bytes_read ()

Returns the number of bytes read so far.

abort ()

Abort the current data transfer.

close ()

Close the data connection and get a response from the FTP server. Returns if the
connection was closed successfully and the first digit of the response from the server was a
'2'.

The following RFC959 commands have not been implemented:

Mount a different file system structure without changing login or accounting information.

Ask the server for "helpful information" (that's what the RFC says) on the commands it
accepts.

Perl version 5.8.6 documentation - Net::FTP

Page 6http://perldoc.perl.org

Methods for the adventurous
Net::FTP Net::Cmd Net::Cmd

Net::FTP
IO::Socket::INET

SIZE BUFFER
TIMEOUT

SIZE BUFFER
TIMEOUT

WARNING

SMNT

HELP

MODE

THE dataconn CLASS

UNIMPLEMENTED

true

Specifies transfer mode (stream, block or compressed) for file to be transferred.

Request remote server system identification.

Request remote server status.

Specifies file structure for file to be transferred.

Reinitialize the connection, flushing all I/O and account information.

When reporting bugs/problems please include as much information as possible. It may be difficult for
me to reproduce the problem as almost every setup is different.

A small script which yields the problem will probably be of help. It would also be useful if this script
was run with the extra options 1> passed to the constructor, and the output sent with the
bug report. If you cannot include a small script then please include a Debug trace from a run of your
program which does yield the problem.

Graham Barr <gbarr@pobox.com>

ftp(1), ftpd(8), RFC 959 http://www.cis.ohio-state.edu/htbin/rfc/rfc959.html

For an example of the use of Net::FTP see

http://www.csh.rit.edu/~adam/Progs/

is a program that can retrieve, send, or list files via the FTP protocol in a
non-interactive manner.

Henry Gabryjelski <henryg@WPI.EDU> - for the suggestion of creating directories recursively.

Nathan Torkington <gnat@frii.com> - for some input on the documentation.

Roderick Schertler <roderick@gate.net> - for various inputs

Copyright (c) 1995-2004 Graham Barr. All rights reserved. This program is free software; you can
redistribute it and/or modify it under the same terms as Perl itself.

Perl version 5.8.6 documentation - Net::FTP

Page 7http://perldoc.perl.org

SYST

STAT

STRU

REIN

REPORTING BUGS

AUTHOR

SEE ALSO

USE EXAMPLES

CREDITS

COPYRIGHT

Debug =

autoftp

Net::Netrc Net::Cmd

